翻訳と辞書
Words near each other
・ Scalding-house
・ Scaldwell
・ Scale
・ Scale (album)
・ Scale (anatomy)
・ Scale (chemistry)
・ Scale (descriptive set theory)
・ Scale (Lepidopteran anatomy)
・ Scale (map)
・ Scale (music)
・ Scale (physics)
・ Scale (ratio)
・ Scale (social sciences)
・ Scale (statistics)
・ Scale analysis
Scale analysis (mathematics)
・ Scale analysis (statistics)
・ Scale armour
・ Scale co-occurrence matrix
・ Scale error
・ Scale factor
・ Scale factor (computer science)
・ Scale factor (cosmology)
・ Scale focus
・ Scale for the Assessment of Negative Symptoms
・ Scale for the Assessment of Positive Symptoms
・ Scale Force
・ Scale height
・ Scale insect
・ Scale invariance


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Scale analysis (mathematics) : ウィキペディア英語版
Scale analysis (mathematics)

Scale analysis (or order-of-magnitude analysis) is a powerful tool used in the mathematical sciences for the simplification of equations with many terms. First the approximate magnitude of individual terms in the equations is determined. Then some negligibly small terms may be ignored.
==Example: vertical momentum in synoptic-scale meteorology==

Consider for example the momentum equation of the Navier–Stokes equations in the vertical coordinate direction of the atmosphere
: + u } + v } + w } - }= - }}} - g +2 + \nu \left(}+}+}\right),\qquad(1)
where ''R'' is Earth radius, Ω is frequency of rotation of the Earth, ''g'' is gravitational acceleration, φ is latitude ρ is density of air and ν is kinematic viscosity of air (we can neglect turbulence in free atmosphere).
In synoptic scale we can expect horizontal velocities about ''U'' = 101 m.s−1 and vertical about ''W'' = 10−2 m.s−1. Horizontal scale is ''L'' = 106 m and vertical scale is ''H'' = 104 m. Typical time scale is ''T'' = ''L''/''U'' = 105 s. Pressure differences in troposphere are ''ΔP'' = 104 Pa and density of air ρ = 100 kg·m−3. Other physical properties are approximately:
:''R'' = 6.378 × 106 m;
:Ω = 7.292 × 10−5 rad·s−1;
:ν = 1.46 × 10−5 m2·s−1;
:''g'' = 9.81 m·s−2.
Estimates of the different terms in equation (1) can be made using their scales:
:
\begin
&\sim \frac \\()
u } &\sim U\frac &\qquad
v } &\sim U\frac &\qquad
w } &\sim W\frac \\()
} &\sim \frac &\qquad
} &\sim \frac \\()
\frac\frac &\sim \frac\frac &\qquad
\Omega u \cos \varphi &\sim \Omega U \\()
\nu \frac &\sim \nu \frac &\qquad
\nu \frac &\sim \nu \frac &\qquad
\nu \frac &\sim \nu \frac
\end

Now we can introduce these scales and their values into equation (1):
:
}+10}
+10}
+10^}
-}

:
= - } } - 10 + 2 \times 10^ \times 10 + 10^ \left(}} + }} + }} \right).
\qquad (2)
We can see that all terms — except the first and second on the right-hand side — are negligibly small. Thus we can simplify the vertical momentum equation to the hydrostatic equilibrium equation:
:}}} = - g. \qquad (3)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Scale analysis (mathematics)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.